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Abstract

Sensitivity Analysis On

Prices of Icicled Step Barrier Options

This paper conducts a sensitivity analysis on a new class of barrier options,
termed icicled step barrier options. This class of barrier option, introduced by
Lee, Ko, and Song (2018), has embedded barriers whose levels are piecewise
constant functions of time and vertical branches attached to the horizontal
barriers, referred to as icicles. The icicled barrier options can be utilized in
security-linked products with knock-in or knock-out payoff structure. By
comparing the prices under different parameter values, calculated by the explicit
formulas previously derived in Lee et al (2018), we aim to discover the

sensitivity of the icicled barrier option price to each parameter.

Keywords : Barrier Option, Step Barrier Option, Icicled Barrier Option,

Sensitivity Analysis
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Chapter 1. INTRODUCTION

1. Research Objectives

Barrier option is a type of path-dependent option with its payoff depending on
whether the price of its underlying asset reaches a specified level, called a barrier,
during the Ilifetime of the option. Since barrier options always have lower
possibilities to pay than standard options, they are no more expensive than
standard options. This advantage of lower premium leads to barrier options being
widely used in practice, both as a direct investment product or as embedded in
equity linked products.

Contrary to typical barrier options, whose barrier level is constant throughout
the entire option lifetime, step barrier options have multiple barriers with their
levels determined as piecewise constant functions of time. Incorporation of multiple
barriers with different levels mitigates inflexibility, the innate limitation of standard
options. This led to widespread usage of step barrier options in structured
products, such as a step—down ELS, one of the top selling financial products in
South Korea.

For insurance companies or financial institutions who aim to sell structured
products built with step barrier options, pricing and hedging are inevitable. While
several approaches to suggest valuation methods for step barrier options have been
made in the literature, less attention has been placed on sensitivities of their prices,

which is a starting block for hedging. This paper aims to fill the gap by providing
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numerical results using closed—form formulas for pricing step barrier options
derived in Lee, Ko and Song (2018) and draw conclusions from the sensitivity
analysis. Furthermore, this paper also deals with step barrier options with icicled

variations as in Lee et al. (2018).

2. Literature Review

First derivations of closed—-form pricing formula for barrier options trace back to
works by Merton (1973) for a down—-and-out call and Rubinstein and Reiner (1991)
for all eight types of barrier options. Following these, diversified from the basic
form with a single barrier which runs for the entire option lifetime, more
complicated barrier options have been introduced to the literature.

Guillaume (2010) introduces analytical formulae for step barrier options, whose
barrier level is a piecewise constant function of time. Icicled step barrier option,
what we will discuss in details in the following sections, is one variation of the
step barrier option.

Lee and Ko (2018) proposed autocallable equity-indexed annuities (EIAs) with
icicled step barrier options. On top of proposing the new variation to the financial
product with step barrier options, they derived explicit pricing formula for this.
This was later developed by Lee, Ko, and Song (2018), by attaching multiple
icicles to step barriers, instead of a single icicle to a single barrier. They derived
explicit pricing formula in a fully probabilistic method, which can be exploited even

by readers without mathematical background in partial differential equation (PDE).
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In order for an insurance company or a securities company to deal with products
with the new class of barrier options embedded, it should have sufficient
information on sensitivity of their payoffs or prices. This paper aims to suggest
how this class of option price changes to different levels of market variables or
product conditions. Results for sensitivity analysis could work as starting points

for designing or hedging the products.

3. Thesis Outline

The remainder of this paper is organized as follows. Chapter 2 first explains step
barrier options with icicles. Preliminaries, relevant joint distribution functions and
pricing formulas for the previously explained class of barrier option will follow.
Chapter 3 introduces one application of this new type of options to equity-linked
security, a widely selling investment product in South Korea. Numerical results
and sensitivity analysis for prices of icicled step barrier options are presented in

chapter 4. Chapter 5 concludes.
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Chapter 2. PRICING STEP BARRIER OPTIONS
WITH ICICLED VARIATIONS

1. Step Barrier Options

A barrier option is a path—dependent option, whose payoff depends on whether
the underlying asset reaches the predetermined level, during the entire lifetime of
the product. An example of ordinary barrier is depicted in (a) of <Figure 2-1>.
Whether the path of the underlying asset touches the horizontal barrier, whose
level is set at 140 in the example, affects if the option will have effect or not. If
the option comes into effect as the underlying reaches the barrier, it is called a
knock-in option, while knock-out option refers to an option which expires as the
underlying reaches the barrier. If an event of knock-in (knock-out) occurs when
the underlying reaches the barrier from below, it is called an up-and-in
(up—and-out) option. On the other hand, options which knock-in (knock-out) if the
underlying asset reaches the barrier from above are called down-and-in
(down—-and out) options. One inflexible property of the standard barrier option is
that a constant-level barrier runs for the entire lifetime of an option.

A step barrier option is one class of barrier option whose barrier levels are
piecewise constant functions of time. (b) of <Figure 2-1> depicts the situation
where the maturity consists of three time periods,(0, t;), (ti, t2) and (t2, T). Unlike

standard barrier option, this class of barrier option can provide different levels of




<Figure 2-1> Different Types of Barriers
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barriers for certain periods of time. This is suited to investors who expect the
volatility of the underlying would fluctuate as time passes until the maturity.
Widespread usage of step barrier options in structured products supports
consumers’ demands on multiple levels of barriers in barrier options.

Icicled variation of step barrier option, first introduced by Lee and Ko (2018) has

both horizontal and vertical barriers as in (d). The vertical barriers, coined as an
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icicle in the paper gets its name from the resemblance of appearance. If we assume
an up-and-out option with the situation in (¢c) where an icicle is place at time t;,
the underlying asset would exist until maturity only if the underlying asset price
1s lower than 130 the whole time and if it is lower than 135 at the very moment
of t;. Moreover, we indicate the bottom of a vertical segment as the level of an
icicle for up—barrier options and the top of a vertical segment for down-barriers

options. To illustrate, the levels of icicles in (d) are 120, 135 and 130 each.

2. Preliminaries

This section provides preliminaries needed for following pricing formulas. Let
S(t) denote the time-t value of the underlying asset. For simplicity, assume that

this asset pays no dividends. Under the Black—Scholes model,
St)=90)eX", ¢+ >0,

where X(t) is a Brownian motion with drift parameter p and the diffusion
parameter o. Maximum value of the Brownian motion between time s and t will be

denoted as
M(s,t) =max{X(1):s <7<t}

From the reflection principle, for 0 <z <m, the following holds, where @(-)
refers to standard normal distribution function. I would refer the readers to Huang

and Shiu (2001) for detailed proof.
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P(X()<a:,M(0t)>m)—eQM @("” 2m /”f).

oV

Thus, for  <m and m > 0, the joint distribution of X(¢) and A0,t) is

2
x— ut g T—2m— ut
—e’ | ——F|.

oVt oVt

Pr(X(t) <z, M(0,t) <m)=

3. The Joint Distribution Functions

This section shows the jointed probabilities of the events related to X(¢) and

M(s,t), the logarithmic asset returns and their partial maximums.

trivariate normal distributions to present events from barrier options with three

steps and three icicles. ®( -, +, *3pp3 ;) denotes a trivariate normal

distribution function with mean zero and covariance matrix,

1 P12 P13
Y= P2 1 po3].
P13 Pz 1

The following formulas state probabilities for situations when the asset price never

touches any of the three icicles, but touches the partial horizontal barriers.

(i) For z; <my,

Pr(X(t, ) <z, X(t,) < x,, X(t3) < x4, M(0,t,) >m,)

_od —2my —pty 1z~ —Hb Ty A b by
S af ’ af VeoVs Vs
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(ii) For z; <m, and z, <m,,

Pr(X(tl) < xl,X(t ) < Ty X(t ) < T, ]\I(tl,t >m2

$1+/'Lt Ty = 2my — pty g —2my — pity \/> \/>\/>
Y ey e

(iii) For z, <my and x5 <m;,

PI’(X(tl) <z, X(tQ) < Ty, X(tg) < T3, M(t27t3 > m3
Ty ity xS+ pty wy—2my — by t1 t1 t2
N Y N T

(iv) For z; < min(m;,m,) and z, <m,,

R(m,

Pr(X(t,) <z, X(t,) < 2y, X(t;) < 24, M(0,t,) > my, M(t,.t, )
=e ‘_ml)@):; -

T, —2my Fpt, my—2(my—my) —pty x;—2(m uts t [t
T e A L

(v) For ) <my,x, <m, and x; <my,

Pr(X(t,) <z, X(t,) < 2y, X(t;) < 24, M(0,,) > ml, Mty ty) >my)

Ty —2my oty xy—2my —pty xy— 2(m utg 151
o oy

(vi) For z; <my,z, <min(my,m,), and z; <mj,

_ eR(mg *"11)4-)3

Pr(X(t,) <z, X(t,) < 2y, X(t;) < 24, Mt,,t,) > m, (t2,t ) >my)

:6}2(771377771)45 [%Mﬁ 2y = 2my — pty x5 — 2(my Nt3 t1 tz
’ o4/ ’ 04/ 19 ’ o4/tg ty’ ts

(vii) For =, < min(m;;m,),z, < min(m,,m;), and z; < ms,
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Pr(X(tl) < x4, X(t2) <z, X(tg) < x5, ]W(O,tl) > my, ]W(tl,tQ) > my, M(tQ,tS) > mg)

R(my—my—my)

=e >

o oy —2my —pt; Ty —2(my—m,) +ut, x3—2(m3—m2+m1)—ut3._ i i_ 2
N\ evn N ’ ot Ve Ve Vg

Using the formulas given above, for =z; < min(m;;m,),z, < min(m,,m;,), and

r3 < my, we can express the joint distribution of the logarithmic returns at times

t), 1y, t; and their partial maximums as

Pr(X(t,) <z, X(t,) < =, X(t3) <z, M(O,tl) < my, M(tl,tg) < my, Mty,t,) < my)

= Pr(X(tl) =<z, X(t ) < Ty X ) <xz,)—(i)— (i73) + (iv) + (v) + (vi) — (vid)

—pb Ty NtQ T3 ™ Mt3 Iy
f t

— (@)= (33)— (343) + (i) + (v) + (vi) — (vid).

4. Pricing Formulas for Icicled Step Barrier Options

Now we consider eight types of step barrier option with icicles, up—and-in,
up-and-out, down-and-in and down-and-out put/call options for pricing. We think

of an option with maturity T, with three time points 0<t, <t, <t3(: 7). For
i=1,2,3, horizontal barrier B, comes into effect for interval [t,_,.t;] and icicle Z,
the vertical branch acts at time ¢;. This can be visualized as <Figure 2-2>. We

denote the risk—free interest rate by r and the strike price by K. To simplify

discussion, we define

Collection @ skku



A, =1{5¢,) < L, St,) < L,, S(t;) < L, max{S(r): 0 <7< ¢,} < B,

max{S5(7) : t; <7<t} < By, max{S(r):t, <7< t;,}< B}

A, =A{St,)> L, St,) > L, S(t,) > L, maX{S(T) <7< t1}> B,
max{5(7) : t; < 7<1t,}> By, max{S(7) :t, <7< 1t,}> By}

A, states an event where the underlying asset never reaches the icicles(Z;) or
the horizontal step barriers(B,) for up-barrier options. This event can be

interpreted as no occurrence of any knock-in or knock-out of an option. Aq states

<Figure 2-2>
Icicled step barrier option

B,

140
|

Sit)

120
I

100
|

Time
the exactly same situation for down-barrier options.

A, and A, can be equivalently stated using logarithmic expressions as

A, ={X() < 2, X (1) < 2y, X(t3) < g, M(0,8,) < my, M(ty,ty) < my, Mty ty) < my}

_10_
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Ay ={X ) >z, X(ty) > @y, X(t3) > 25, m(0,¢,) > my,m(ty,ty) > my,mty,ts) > my},

where m(s,t)= Min{X(r):s < 7 < t}.

<Table 2-1> Payoff Functions of Icicled Step Barrier Options

Option type Payoff Option type Payoff
Up and Out Put (UOP) | (K—S(7))"1(A4,) |Down and Out Put (DOP)| (K—S(7))"1(A,)
Up and In Put (UIP) (K—8(T7)"I(Af) Down and In Put (DIP) (K—8(7)" 1r(Af)
Up and Out Call (UOC) | (S(7)— K)"I(A,) |Down and Out Call (DOC)| (S(7)— K)"1(A,)
Up and In Call (UIC) (S(T)— K)"I(AL) | Down and In Call (DIC) | (S(7)— K)"1(A)

Using A, and A, defined previously, payoff functions for eight types of icicled
step barrier options are illustrated in <Table 2-1>. (S(7)— K)* and (K— S(7))" are
identical to payoffs of ordinary call and put options each. As 1(4,),71(4,),1(Af), and
I1(A5) has value 1 only if the underlying asset meets the barrier conditions, the

payoff becomes 0 when the conditions are not met. Furthermore, in order to
express pricing formulas of the options simpler, let us define functions PA, and

PA, as following.
PAu (/~L7$17$27$3am1am27m3)

=Pr(X(t) < 2, X&) < 3y, X(t5) < g, M(0,)) < my, M(t,ty) < my, Mty ty) < my)
PAd(u,xl,xQ,xB,ml,mZ,mg)

=Pr(X(t,) >z, X(t;,) > 29, X(t5) > 4, M(0,81) > my, M(ty,t,) > my, M(ty,t5) > my)
The two functions have a following relationship.

PAd (/~L7$17$27~T3am17m27m3): PAU (_ My ™ Ty Loy Tgy™ My, Mgy — m3>

_11_
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<Table 2-2> shows pricing formulas for icicled step up-barrier options. Here
we let k=In(k/S(0)) and aAb=min{a,b}. In case of up-and-out call, we only
consider A< L;, as when the strike price K is larger than the level of the last
vertical barrier, Lz, there is no chance the option comes into effect. UOC only pays
if the stock price never touches the barrier throughout its lifetime but is larger

than the strike price at maturity.

_12_
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<Table 2-2> Pricing Formulas for Icicled Step Up-Barrier Options

Option type Price
o2 o2
uop Keﬂ'TPAu (r— 7@1795271’3/\ k,ml,mZ,m3) — S(O)PAu (r+ 7,%1,.132,%3/\ k,ml,mZ,m3)
2
k— (r*%) T 52
Ke~'T @(T) —PA, (r— ?,xl,xw:ﬂg/\k,ml,mz,m;;)
urp aIvEy
k— (r*%) T o2
-5(0) @(T) —PA, (r+ 7@1@2@3/\ komy,mg,ms)
2 2
S(0) [PAu (r+ 5 ,xl,IQ,xg,ml,mQ,m3) —PAU(T+ %,xl,mwk,ml,mwn%)}
2 2
uoc *Ke_TT{PAu (r— %,xl,xz,x3,ml,rn2,7n3) —PA, (r— %,$17J;27k7ﬁbl,ﬂb2,m3)]
(K< L,) 2 2
s S(0) [PAu (r+ 5 ,x],x27x3,m1,m2,m3) —PA, (r+ %,xl,xz,k,ml,mg,m3)}
2
—Kef"T{PAu (r— %,xl,xmxs,mpmmms) —PA, (r— %,x17x27k,m1,m2,m3)]
2
—(r+ %) T .
5(0)[45(—7) —PA, (r+ 77I1,x2,w37m17m2,m3)
UIC -
k—(r——)T
(K< L,) 2 2
3 +PAU(r+%,x1,x2,k,ml,m2,m3)} —Ke "T[®(— T)
o
o
—PA, (r 7 ,xl,xZ,x3,m1,m2,m3) +PAU(’I‘* 7,x1,x2,k,m1,m2,m3)]
o2 o?
uIC k—(r+ 2T k—(r—2)T
(K> Ly) 5(0) d(— ) —Ke "To(— )

oV'T

_13_
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Chapter 3. APPLICATIONS OF ICICLED
STEP BARRIER OPTIONS

1. Autocallable ELS

Equity-linked security(ELS) is one of the best-selling investment product in
Korea. The equity-linked securities refer to financial products whose payoffs track
the performance of underlying assets. Vast majorities of ELS selling in Korea has
an auto—callable feature, which means the product is automatically called at certain
redemption intervals when pre-determined conditions are met, or expire at
maturity.

In order to exploit pricing formulas provided in previous chapter, let us assume
an ELS product with three time intervals. The first two time points t; and t; are
early redemption dates, which can also be called autocall dates. An investor makes
an initial investment F equal to 1 at time 0. At each early redemption date, the
underlying index will be checked against the barriers. If the underlying index is
higher than the predetermined value at t;, the initial investment is automatically
redeemed with a higher rate of return at the moment. If the first condition is not
met, the investor waits until the second autocall date and check whether the early
redemption condition is met. Usually this condition at second early redemption date
1s not higher than the first one. Again, if the condition is met at the moment, the

investor receives the initial investment with a high rate of return. If the underlying

_14_
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could not meet both of the conditions, than it will be checked whether the
maximum value of the underlying index has ever touched a predetermined barrier.
If this last condition is not met, the investor will receive the underlying index as
it 1s. The discounted payoff from this auto—callable product can be illustrated as

follows:

e_rtl(lJrcl), if X(t,)>x,,

| ¢ ey), 1 X)) < 2, X(ty) >,
discounted payoff=19 _ .
e 3(l—i-c?,), ifX(tl)ﬁxl,X(tQ)ﬁmQ,m(O,T)>m1

—rty X(T) otherwise.
e ‘e ,

Price of this auto—callable product can be evaluated as following.
e "(1+¢ )Pr(X(t) > zh*)+e (1 +e)Pr(X(E) < 2, X(t,) > 2y,10%)
+ eﬂtf“(l—l—c:;)Pr(X(h) <z, X(tQ) =< Ty, m(O, T) > m;h*)
+e BT I(X(H) < 2y, X(ty) < 2y, m(0, T) < m); h¥]
— e (1) < (De (1t a) X (D) +e (14 e,) % (D) + (IV), where

(I) = Pr(X(t,) > x;h*) = &

T —(T—02/2)t1
ot )
(II) = Pr(X(t,) <z, X(t,) > z5;h*)

= Pr(X(t,) < 2,) — (X(t,) < 2, X(t,) < 2,h*)

- x, —(7“—02/2)151 e
i :

$1—(r—02/2)t1 332—(7“—02/2)752' t1)

N

_15_
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For (I, we denote Y(t)=—X(t) for 0<t< T, y, =—z,y, = x,,m, =—m, and

ZWy(s,t) =max{Y(r);s <7< T}.

(I =Pr(X(t,) <z, X(t,) < x5, m(0, T) > m; h*)
=Pr(Y({t,) =y, Y(ty) = y,, M, (0, 7) < m; h*)
=Pr(M,0,7) < m;h*) — Pr(¥(t,) <y,, M, (0, T) < m; h*)

—Pr(Y(ty) <yy M0, T) < m; h*)+Pr(Yt)) <y, Yty) <y, M0, T) < m; h*)

Pr(M,(0,7) < m;h*) =&

my+(7‘—02/2) T) (QT/Uzl)mygp( —my+(r—02/2) T)
—e , ’

oV'T oV'T

7-—1—(7"—02/2)t7- m1+(7"—02/2)T t,
Pr(Y) <y M, (0, T) < mih*) = ,| . T A

i ovJT
yi—me—(r—az/Z)ti my+(7“—02/2)T t;
+P, U\/E , T AT
_e_(%./gz_l)my@ (yi—me+(r—02/2)t,i —my—i-(r—aZ/Q) T\/t_T
? 0\/t7 ’ o/ T A
—ei(%/ghl)m”@ y,— (r—o*/2)t, —my+(7"—o'2/2)T._\/tz
N\ ok vt V7

for 1=1,2.

Pr(¥(t,) <y, Y(ty) <yy M, (0, T) < m;h*)
=Pr(¥(t,) <y, Yt,) <y, Y(T) <m, M, (0,t,) < m, M (0,t,) < m,M (0, 7) < m;h*)

=PA, (— 7"+02/2,— Tyy— Loy My— My— M, — m).
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From the factorization formula, (IV) can be restated as

(1v) = B[V 1(X(t,) < z,, X(t,) < x,, m(0, T) < m); h*]
=Pr(X(t,) <z, X{t,) < z,,m(0,7) < m;h*+1)

=Pr(X(t,) <z, X(t,) < zy;h*+1)—Pr(X(t)) <z, X(t,) < 2, m(0,7) > m;h*+1)

whose probabilities can be easily calculated from the preceding formulas, by

changing the drift.

2. An ELS with Step Barrier Option Embedded

This section introduces one example of application of icicled step barrier options
to ELS. Unlike the auto-callable product assumed in previous section, we will
think of a new design that incorporates partial maximums within the subperiods

before maturity. Discounted payoff for this product can be illustrated as follows:

e_rtl(l-l—cl), if M(O,tl) >m,,
—rt .
. :(1 Cif M0,t,) < my, M(t,t,) > my,
discounted payoff = e—rT( +ey), A0 MOt) < my, Mltyty) >m,
e "(ltey),  if M0,t) < my, Mt ty) < my, M(t, T) >m,
e ", otherwise

Example of auto-callable suggested in previous section has early redemption
conditions of the underlying index at a moment. However, by using partial
maximum conditions, this product scheme can appeal to investors who want their

payoff linked to performance of the underlying index over a period, not at one
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point of time.

The price of this new product can be similarly state as following.

67”1(1"{—01 )Pr(MO,tl) > ml;h*) +€7Tt2(1+02)Pr(M(07t1) =my, M(tptz) > mgy;h*)
+e (14 ey)Pr(M0,t)) < my, Mty,ty) < my, Mty, T) > mygh*)
+ e "TPr(M0,t,) < my, M(t,,t,) < my, Mt,, T) < myh*)

=¢ "1te)x(Dte (U +e) <) +e T[(1+e,) < (D) + (1V)].

(7) = Pr(M(0,t,) > m;;h*) =Pr(X(t,) > m;;h*)+ Pr(X(,) < m,, M0,t,) > m;h*)

B _m1+(r—02/2)t1 (27“/(72*1)1711 _ml_(T'_O'2/2>t1
@( U\/E )—l—e P U\/E

(II) = Pr(M(0,t,) < my, M(t,,t,) > myh*)
=Pr(M0,t,) < m;h*)— Pr(M0,t,) < my, M(t,,t,) < myh*)

=1—Pr(M0,t,) > my;;h*)— Pr(M0,t,) < my, M(t,,t,) < myh*)

m —(7"—02/2)t —(r—a2/2)t t
Pr(M(0,t,) < my, Mt ,t,) < my;h*) =&, — L 2=

O'\/E ’ g\/g ’ t,
_G(QT/UZ,I)m@ —ml—(r—(fg/Q)t1 m2—2m1—(r—02/2)t2‘ t_l)
2 U\/E ’ O'\/g Vot
_6(2,,/02,1)%@2 m, +(r—a/2)t, —my,—(r—0o*/2)t, e
a\/E 7 a\/zg 7 T
+e(2r/02_1>(m2_m1)¢2(—m1—I—(r—o2/2)t1 —m2+2m1—(r—0—2/2)t2‘_ E
R ol vy

(1) = Pr(M(0,t,) < my, M(t,.t,) < my, M(t,, T) > mg;h*)
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= PT(M(Oytl) =my, M(tptg) < mQah*)
_PT(M(Oatl) =my, Mtlvtz) =< My, M(tga ﬂ = mgvh*)

=Pr(M(0,t,) < my, M(t,,t,) < my;h*)—(IV)

(IV) =Pr(M0,t,) < my, M(t,,t,) < my, M(t,, T) < mg;h*)

2
o
=PA, (r— 77m15m25m35m17m27m3)
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With explicit pricing formulas provided in the previous chapters, calculation of
icicled barrier option prices becomes straightforward for a given set of parameter
values. This chapter will provide icicled step barrier options prices calculated with
different levels of parameters and discover the impact of each variable and its

parameter sensitivities. The following numerical calculations are performed using

Chapter 4. NUMERICAL RESULTS
AND SENSITIVITY ANALYSIS

the R packages.

1. Numerical Results for Step Barrier Option Prices

with S(0)=100, K=100, r=3%, 0=20%, t:=0.5, t»=1, T=t3=1.5

<Table 4-1> The step barrier option prices

B B, B L L, Ls (HUOC (2UIC (3 uoP (HUIP
(i) 100 100 100 100 100 100 0 11.8929 0 74927
(i1) 0 o o o 0 o 11.8929 0 74927 0
i) | 120 120 120 120 120 120 0.7263 11.1666 6.8804 0.6122
Gv) | 120 130 140 120 130 140 1.6625 10.2304 70676 0.4250
) 140 140 140 140 140 140 44136 74793 74735 0.0192
(vi)| 120 140 160 120 140 160 1.8311 10.0618 7.0897 0.4030
(vii) 0 140 o 0 140 0 7.7007 41923 74740 0.0187
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Consistent with previous discussions, numerical studies in this section will
continue to assume three terms and set them as t;=0.5, to=1, and T=t3=1.5. The
barrier levels are changeable at each term end: end of a half year (t;=0.5) or end
of a year (to=1). The icicles can be set at end of each barrier, t;=0.5, to=1 and

T=t3=1.5.

<Figure 4-1> Barrier condition (iv)
of <Table 3-1>

Time

<Table 4-1> demonstrates prices of options without icicles, assuming S(0)=100,
K=100, r=3%, 0=20%, t1=0.5, to=1, T=t3=1.5. Step barrier options are special cases of
icicled step barrier options, when levels of icicles equal to the horizontal barriers.
Rows (i) and (ii) show prices of Vanilla call and put options. By setting the level
of first barrier equal to the initial stock price S(0), options in row (i) knock—out
(for up—and-out) or knock-in (for up—and-in) at the beginning of their lifetime. On
the other hand, since options in row (ii) cannot reach the barriers set at infinity,

up—and-out options are equivalent to ordinary call or put options, while up—and-in
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options do not pay regardless of stock price movement, becoming zero value. Rows
(iii) and (v) illustrate ordinary barrier options, with a single barrier during the
option duration. Rows (iv) and (vi) show prices of step barrier options, with
different level of barriers for each of three terms. <Figure 4-1> illustrates a step
barrier option with barrier options from row (iv). Row (vii) shows an example of
partial barrier option with monitoring period of [0.5, 1].

A barrier option must be worth less than or equal to one without barrier, due to
less probability to pay. The results in the table are consistent with this property.
Furthermore, there is a parity relationship for barrier options having the same
barrier: Knock-in-option + Knock—out-option = Ordinary option. We can notice
values of columns (1) and (2) add up to vanilla call option price (=11.8929) and
those of (3) and (4) add up to vanilla put option price (=7.4927), respectively.

Let’s look into details. As rows (ii) and (v) are both examples of ordinary
barrier options, we can observe price change made by different levels of barriers.
As the barrier level rises from 120 to 140, prices of UOC and UOP became more
expensive, while those of UIC and UIP became cheaper. The rise in barrier level
leads to lower possibilities of stock prices reaching the up-barrier, for both
knock-in or knock-out conditions. Therefore, up—and-out options bear less risk to
lose value, while up—and-in options bear more risk that the option might not go

into effect.
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2. Numerical Results for Icicled Step Barrier Option Prices

<Table 4-2> illustrates the impact of different levels of barriers and icicles,
interest rate, volatility and strike price on step barrier option prices. Comparing
between (i) and (ii), (iii) and (iv) gives insights for impact of horizontal barrier
level on option prices. On the other hand, we can note the impact of vertical icicles
on option prices by comparing between (ii) and (iii) or (iv) and (v). Basically,
mechanisms of how barriers and icicles affect option prices are similar. Either
vertical or horizontal, higher level of barriers leads to lower possibilities to
knock-in or knock-out, leading to up—and—-out options becoming more valuable and
up—and-in options becoming less valuable.

The option prices for risk—free rate of 3% and 4% show that as r rises, UOC
and UIC prices rise while those of UOP and UIP falls. This can be attributed to
properties of ordinary options, where call option prices have negative sensitivities
and put option prices have positive sensitivities with respect to r.

Volatility, measured by standard deviation of stock log-return, bring complicated
consequences on option prices. From the table, we can note that most UIC, UOP
and UIP prices rise as sigma rises, while UOC prices drop. Without icicles or
barriers, option prices are known to rise as volatility rises. However, higher
volatility of logreturn seems to raise the possibilities of knocking-out for UOC,
leading to lower prices. Higher strike price lowers value of call option and
increases value of put option. The effect of strike price is identical for icicled step
barrier options, as the structure of payoff at maturity is the same. Impact of

risk—free rate and volatility on option prices will be discovered in more details, in
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next section.

<Table 4-2> The icicled step barrier option prices with different levels of barriers and icicles
assuming S(0)=100, t;=0.5, t»=1, T=t3=1.5

K=100

r 0 B B, Bs Li L, Ls (Huoc | @UuIC | (3UOP | (HUIP

@ | 120 130 140 110 120 130 2.1868 9.7062 6.8517 0.6410

() | 130 140 150 110 120 130 24103 9.4826 6.9962 0.4964

20% | (i) | 130 140 150 120 130 140 4.6258 7.2671 73714 0.1213

(iv) | 140 150 160 120 130 140 4.8730 7.0199 7.3930 0.0996

(v) | 140 150 160 130 140 150 6.9729 4.9200 74748 0.1787
3%

@ | 120 130 140 110 120 130 1.0186 15.5425 9.7192 24416

i) | 130 140 150 110 120 130 1.3984 151627 | 10.6529 1.5079

30% | (i) | 130 140 150 120 130 140 2.3879 141627 | 11.2133 0.9475

Gv) | 140 150 160 120 130 140 2.9301 14.1731 | 11.5633 0.5975

(v) | 140 150 160 130 140 150 4.1503 136310 | 11.8196 0.3412

@ | 120 130 140 110 120 130 2.2258 10.4308 6.2348 0.5982

i) | 130 140 150 110 120 130 24548 10.2018 6.3636 0.4644

20% | (i) | 130 140 150 120 130 140 4.7560 7.9006 6.7191 0.1140

(iv) | 140 150 160 120 130 140 5.0140 7.4626 6.7394 0.0937

(v) | 140 150 160 130 140 150 7.2324 5.4242 6.8162 0.0169

4%
@ | 120 130 140 110 120 130 1.0225 16.2270 9.1037 2.3222

(i) | 130 140 150 110 120 130 1.4046 15.8449 9.9870 1.4390

30% | (i) | 130 140 150 120 130 140 24079 14.8415 | 105212 0.9048

iv) | 140 150 160 120 130 140 2.9571 142924 | 10.8540 0.5719

(v) | 140 150 160 130 140 150 4.2027 13.0468 | 11.0991 0.3268
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K=120

r 0 B, B, Bs L L, Ls (Huoc | @QuIC | (3UOP | (HUIP
@) 120 130 140 110 120 130 0.1408 4.5561 16.5923 2.8243

(i) | 130 140 150 110 120 130 0.1661 4.5308 17.0691 2.3474

20% | (iii) | 130 140 150 120 130 140 0.7241 3.9727 187026 0.7140
(iv) | 140 150 160 120 130 140 0.7973 3.8996 18.8055 06111

. (v) | 140 150 160 130 140 150 1.6334 3.0635 19.2752 0.1414
e @ 120 130 140 110 120 130 0.0680 9.2872 17.8386 6.2363
(i) | 130 140 150 110 120 130 0.1071 9.2480 19.8531 4.2218

30% | (i) | 130 140 150 120 130 140 0.3868 39684 21.3043 2.7706
(iv) | 140 150 160 120 130 140 0.5237 8.8315 221792 1.8957

(v) | 140 150 160 130 140 150 1.0201 8.3351 22.9300 1.1448

@ 120 130 140 110 120 130 0.1461 4.9898 154281 271196

(i) | 130 140 150 110 120 130 0.1724 4.9635 158314 2.2663

20% | (i) | 130 140 150 120 130 140 0.7597 4.3762 17.4536 0.6741
(iv) | 140 150 160 120 130 140 0.8368 4.2991 17.5530 0.5946

. (v) | 140 150 160 130 140 150 1.7293 3.4066 18.0092 0.1385
e @ 120 130 140 110 120 130 0.0689 9.7912 16.8597 6.0121
(i) | 130 140 150 110 120 130 0.1085 9.7516 18.7866 4.0852

30% | (i) | 130 140 150 120 130 140 0.3935 9.4666 20.1873 26845
(v) | 140 150 160 120 130 140 0.5330 9.3271 21.0302 1.8416

(v) | 140 150 160 130 140 150 1.0422 83179 21.7580 1.1138
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3. Sensitivity Analysis of Icicled Step Barrier Option

Prices

To get some insights into the parameter sensitivities of icicled step barrier
option prices, this subsection is devoted to demonstrating numerical results of
prices under different levels of parameter values including the risk-free rate r,
stock return volatility o and strike price K.

Throughout this section, we will assume S(0)=100, t;=0.5, to=1, T=t3=1.5, and
B:=130, B»,=140, B3=150, 1.,=110, L»=120, L3=130 if not stated otherwise.

1) Variation of Option Price with Interest Rate

The rate of change of an option price with respect to the interest rate, is called

rho in Greeks. For ordinary options, call option price increases and put option price

<Figure 4-2> Ordinary option prices
under different levels of risk—free rate, with K=100, 06=20%

» -
w _|
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2 o ¥
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r r
— 26 —

Collection @ skku



decreases as r rises. This relationship can be explicitly shown by differentiating
option price calculated by Black-Scholes formula with respect to r, as follows. ¢
and p stand for price of ordinary call option and put option, respectively, and N(-)
denotes cumulative distribution function for standard normal distribution. <Figure

4-2> visually depicts this relationship.

c= S,N(d,)— Ke”""N(d,)
p=Ke ""N(—d,)— SN(—d,)

ln(SU/K)—i-(r—i-JQ/Q)T

oV'T ’

_ In(§/K)+(r—=0*/2)T

2 oV T

where d; =

%~ KT TN(,) = 0
dr
P KT IN(—d,) <0
dr

The trend of option price shown in <Figure 4-3> corresponds to this traditional
understandings in rho. What we can find in details would be the convexity, or the
second derivatives of the option price with respect to r. When we compare UIC to
UOC, we notice that price function is convex for UIC and concave for UOC. The

risk—free rate r mainly affects the discounting factor in pricing function of options.

. . . 1
However, as we set drift parameter p of the Brownian motion equal to ?”—50'2,

increase in risk—free rate also raises the drift of the process. In other words, when
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other conditions stays still, the probability of knocking-in or knocking-out also
increases in higher interest rate conditions, as in <Figure 4-4>. Therefore, UIC
price increases faster than UOC. In a similar context but in the opposite direction,

UQOP price decreases faster than UIP, as UOP has to bear higher possibilities to

knock-out.
<Figure 4-3> Icicled step barrier option prices (up=barrier)
under different levels of risk-free rate, with K=100, 0=20%,
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<Figure 4-4> Risk-neutral probability of knocking—-in or
knocking-out before maturity with K=100, 0=20%,

040 045
1 1

Probability

035
1

T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10

2) Variation of Option Price with Volatility
For ordinary options, option price is a non-decreasing function of volatility, as
presented in <Figure 4-5>. But we can note that for UOC, the price peaks when

sigma is around 0.1 and drops in <Figure 4-6>, which depicts variation of icicled

step barrier option price with different level of volatility.
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<Figure 4-5> Ordinary option prices
under different levels of volatility, with K=100, r=3%
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One important reason behind this is that increased o makes the stock price
easier to touch the barrier so that UOC loses effect. On the other hand, price of
UQOP, which also is an up-and-out option, has lower speed of increase than UIP
but still shows a positive slope. A possible explanation could be found in the main
difference between UOC and UOP. UOC has two conflicting conditions to be met,
in order for the option to pay. The underlying asset has to be larger than
pre—specified strike price and it should not be any larger than step barriers for the
whole lifetime. On the other hand, barrier conditions and payoff condition at
maturity for UOP are in the same direction; underlying asset of UOP should be
always smaller than the up—and-out barrier for the entire lifetime and it should
also be smaller than the strike price at maturity. Therefore, even when the
volatility of the underlying asset is high, the process or the path of the stock

contributes to UOP satisfying the payoff conditions.
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<Figure 4-6> Icicled step barrier option prices (up=barrier)
under different levels of log-return volatility, with K=100, r=3%
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<Figure 4-7> Risk—neutral probability of non-zero payoff
with K=100, r=3%,
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<Figure 4-7> shows risk—neutral probability of each option to pay at its
maturity, for UOC and UOP respectively. To be specific, the probability functions

for (a) and (b) are as following, assuming k < x,.

(@)Pr(X(t)) < 2, X(ty) < 29, X(t3) < Kk, M(0,8,) < my, M(t,,ty) < my, Mty ty) < my)

WPr(X () < 2y, X(ty) < 29,k < X(t3) < 24, M(0,1,) < my, M(ty,ty) < my, Mty ty) < my)

We can note that the probability for UOC drops as the volatility increases,
while the probability for UOP rises until certain level and then falls afterwards,
as the volatility level goes up. We can infer that this probability affect the price
sensitivity with respect to volatility, interacting with innate positive correlation

between option price and stock return volatility.
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Chapter 5. CONCLUSION

On the basis of previous research on pricing of step barrier options and its
icicled variations, this research aimed to provide diverse numerical results and
conduct a sensitivity analysis on them. Either as a direct investment product or
embedded in equity linked products, this new type of step barrier option can be
used widely in products.

This research presents prices of step barrier options and icicled step barrier
options with different values of parameters. From step barrier option prices, we
could infer how the levels of step barriers affect the option prices. For icicled step
barrier options, the numerical results enable readers to compare option prices with
different levels of barriers and icicles, risk—free rate and volatility. Especially for
risk—free rate and volatility, this paper has conducted sensitivity analysis, in order
to clarify multiple consequences the parameter values have on option prices.

Analyzing sensitivity of option price with respect to its parameters is an
inevitable step for companies which strive to sell or deal with option embedded
products. From this research, due to existence of barriers and icicles, we have
discovered the new type of option exhibits sensitivities different to ordinary
options. Therefore, when it comes to barrier options or their variations, careful
scrutiny on option sensitivities should be carried out, with its innate or unique

properties taken into account.
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